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Abstract 

In this paper, we describe our learning progressions approach to early algebra research that 

involves the coordination of a curricular framework, an instructional sequence, written 

assessments, and levels of sophistication describing the development of students’ thinking. We 

focus in particular on what we have learning through this approach about the development of 

students’ abilities to generalize and represent functional relationships in a grades 3-5 early 

algebra intervention by sharing the different levels of responses we observed in students’ written 

work and the percent of students situated at each level across different tasks. 

Keywords: functions, functional thinking, learning progression, early algebra, representations. 
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Purpose 

The failure of school mathematics’ traditional arithmetic-then-algebra approach to 

adequately prepare students for formal algebra has prompted calls for early algebra (Kaput, 

1998; Kaput, Carraher, & Blanton, 2008). Early algebra is an approach whereby elementary 

students are provided the time and space necessary to develop an understanding of important 

algebraic concepts—such as generalized arithmetic, variable, and function—through their 

engagement in rich, age-appropriate tasks. 

Our purpose in this paper is to share results from a three-year longitudinal study designed 

to measure the impact of an early algebra intervention on students’ algebra understanding and 

readiness for middle grades. We focus in particular on the development of students’ abilities to 

generalize and represent functional relationships and share the levels of sophistication we 

observed in students’ thinking over time. 

 

Theoretical Framework 

 This study is situated in the context of an Early Algebra Learning Progression [EALP] 

that integrates curriculum, instruction, assessment, and analyses of student learning. With a focus 

on generalizing and representing functional relationships, we describe the first three parts of our 

learning progression to frame the fourth, which will be elaborated on in the results section. For a 

more complete description of the learning progressions approach we employ in this project, see 

Fonger, Stephens, Blanton, and Knuth (2015). 
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Curricular framework 

We define our curricular framework to include the big ideas, algebraic thinking practices, 

core concepts, and learning goals on which our intervention and assessments items were based. 

Big ideas are “key ideas that underlie numerous concepts and procedures across topics” 

(Baroody, Cibulskis, Lai, & Li, 2004, p. 24). Drawing from existing domains around which 

much of early algebra research has matured, the big ideas in our progression are (a) equivalence, 

expressions, equations, and inequalities, (b) generalized arithmetic, (c) functional thinking, (d) 

variable, and (e) proportional reasoning. The algebraic thinking practices cutting across these big 

ideas are based on Kaput’s (2008) early algebra framework and include generalizing, 

representing, justifying, and reasoning with mathematical relationships. Core concepts are 

underlying ideas that are critical to understanding a big idea. Under the big idea of functional 

thinking, for example, a core concept is Recursive patterns describe variation in a single 

sequence of values. A recursive pattern indicates how to obtain a number in a sequence given the 

previous number or numbers. Finally, a learning goal (Clements & Sarama, 2014) makes a 

statement about the nature of understanding or skills expected of students around a given 

concept. A learning goal under the big idea of functional thinking, for example, is to Understand 

how to identify and describe correspondence relationships using words or variables. The 

identification of learning goals was heavily informed by existing empirical research suggesting 

what students are capable of understanding at particular grade levels (e.g., Blanton, Brizuela, 

Gardiner, Sawrey, & Newman-Owens, 2015; Carraher, Martinez, & Schliemann, 2008; Lannin, 

Barker, & Townsend, 2006; Martinez & Brizuela, 2006; Warren, Cooper, & Lamb, 2006). 
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Instructional sequence 

The curricular framework provided a starting point for the development of an 

instructional sequence for grades 3-5. The instructional sequence includes 17-18 lessons at each 

grade level built around the curricular framework’s learning goals. These lessons include 

“Jumpstarts,” or short tasks that review previously-discussed topics, and more extensive 

problem-solving tasks that provide the focus for student activity in the lessons. These tasks were 

often adapted from those used in previous research and generally allow for multiple points of 

entry so that students at varying levels of sophistication can demonstrate competence. The lesson 

plans additionally provide teacher supports, including anticipated student responses, potential 

student difficulties and misconceptions, and suggestions for questions to promote students’ 

algebraic thinking. 

 

Assessment items 

Written assessments for each of grades 3-5 were designed to align with the curricular 

framework and learning goals targeted by the instructional sequence. Items were piloted and 

revised if necessary prior to administration. Several items appeared at multiple grade levels to 

allow for the tracking of growth over time. Assessment items included a focus on the range of 

big ideas and algebraic thinking practices included in the curricular framework and, like the tasks 

used in the instructional sequence, were often adapted from those that had performed well in 

previous research and generally offered multiple points of entry. See Figures 1 and 2 for the 

assessment tasks related to the big idea of functional thinking that will be discussed in the 

results. 
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Brady is celebrating his birthday at school. He wants to make sure he has a seat 
for everyone. He has square desks. 

 
 

 
 
 
 
 
  
 

If he joins another desk to the second one, he can seat 6 people: 
 
 
 
 
 
 

 
a) Fill in the table below to show how many people Brady can seat at different 

numbers of desks. 

Number of desks Number of people 
1 2 
2 4 
3  
4  
5  
6  
7  

b) Do you see any patterns in the table from part a? If so, describe them. 

c) Think about the relationship between the number of desks and the number 
of people. 

Use words to write the rule that describes this relationship. 

He can seat 2 people at one desk 
in the following way:	
  

If he joins another desk to the 
first one, he can seat 4 people:	
  



Functional Thinking Learning Progression  Stephens, Fonger, Blanton, Knuth 

	
   7 

Use variables (letters) to write the rule that describes this relationship. 

d) If Brady has 100 desks, how many people can he seat? Show how you got 
your answer. 

e) Brady figured out he could seat more people if two people sat on the ends of 
the row of desks. For example, if Brady had 3 desks, he could seat 8 people. 

 
 
 
 
 

 

How does this new information affect the rule you wrote in part c? 

  Use words to write your new rule: 

  Use variables (letters) to write your new rule:  

Figure 1: The Brady assessment task. 
 

  



Functional Thinking Learning Progression  Stephens, Fonger, Blanton, Knuth 

	
   8 

 
The following pattern is growing so that each picture is made up of more and more 
stars.  

      ★★★ 
   ★★   ★★★ 
  ★   ★★   ★★★ 
Picture 1          Picture 2   Picture 3 

 
The following table shows the picture number and the number of stars in that 
picture: 

Picture Number of stars 
1 1 
2 4 
3 9 
4 16 
5 25 
6 36 

 
a) Think about the relationship between the picture number and the number of 

stars in that picture. 

Use words to write the rule that describes this relationship. 

Use variables (letters) to write the rule that describes this relationship. 

b) Use your rule to predict how many stars will be in the 100th picture. Show 
how you got your answer. 

 
Figure 2: The Growing Stars assessment task. 

 

Levels of sophistication 

In the context of the curricular framework, instructional sequence, and assessment items, 

levels of sophistication describing students’ understanding over time were posited based on 

findings from existing research and formed the starting point for the coding schemes (described 
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below) used to evaluate student responses to the assessment items. The coding scheme used to 

describe students’ generalization and representation of functional relationships, for example, was 

based in part on Blanton et al.’s (2015) learning trajectory describing the development of first-

grade students’ functional thinking (see Table 1). 

 

Table 1: Blanton et al.’s (2015) levels in first-grade students’ understandings of functional 
relationships. 

Levels Characteristics 

Pre-Structural 
Does not describe or use (even implicitly) any mathematical 
relationship in talking about problem data. May notice a non-
mathematical regularity in the inscriptions. 

Recursive-Particular Conceptualizes a recursive pattern as a sequence of particular 
instances. 

Recursive-General Conceptualizes a recursive pattern as a generalized rule between 
arbitrary successive values. 

Functional-Particular 
Conceptualizes a functional relationship as a sequence of particular 
relationships between specific corresponding values “quasi-
generalization” (Cooper & Warren, 2011). 

Primitive Functional-
General 

Conceptualizes a functional relationship as a general relationship 
between two quantities, but cannot describe a mathematical 
transformation on two arbitrary quantities. 

Emergent Functional-
General 

Conceptualization of functional relationship reflects emergence of 
key attributes (e.g., characterizing the generalized quantities or 
mathematical transformation). 

Condensed 
Functional-General 

Conceptualizes a functional relationship as a generalized 
relationship between two arbitrary and explicitly-noted quantities. 

Function as object 
Perceives boundaries in the generality of the functional relationship; 
conceptualizes functional relationship as object on which operations 
could be performed. 

 
 

In the results section, we present our findings—in the form of levels of sophistication—

describing students’ abilities to generalize and represent functional relationships over time. 

Consistent with a learning progressions approach, we emphasize that these levels must be 
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considered in the context of the curricular framework, the instructional sequence, and the 

assessment items, and that the four components together make up the EALP. 

 

Method and Data Sources 

 

Participants and Intervention 

 Participants in our early algebra intervention were 104 students from one school in the 

Northeastern United States. These students were taught 17-18 lessons (as described in 

instructional sequence above) in each of grades 3, 4, and 5 that focused on the big ideas and 

algebraic thinking practices identified in the curricular framework. A member of our research 

team—a former third-grade teacher—taught the lessons to all students in all three years of the 

study. 

  

Data collection 

Students completed a one-hour written assessment (described in assessment items above) 

as a pre-test at the beginning of grade 3 (prior to the instructional intervention), then again at the 

end of grades 3, 4, and 5. 

 

Data analysis 

 Responses to the assessment items were coded for correctness as well as for strategy use. 

The development of the strategy codes began with the identification of strategies from existing 

research on students’ algebraic thinking and continued with the identification of patterns of 

responses in the data collected. The strategy codes ultimately became the “levels of 
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sophistication” that will be shared in the results below. 

 

Results and Discussion 

 We now present the levels of sophistication observed in students’ written work on the 

Brady task (see Figure 1) administered at the beginning of grade 3, the end of grade 3, and the 

end of grade 4 and the Growing Stars task (see Figure 2) administered at the end of grade 4. We 

focus only on the parts of these items that involve generalizing and representing generalizations. 

The final paper and presentation will include results from the end of grade 5 as well. See Table 2 

for the levels of sophistication we use to describe students’ abilities to generalize and represent 

generalizations and Tables 3, 4, and 5 for the percent of student work falling into the various 

levels in response to specific assessment prompts.  

As illustrated in Table 2, we identified a range of responses students provided when 

asked to identify or represent a generalized relationship. The ordering of the levels was informed 

by existing research (e.g., Blanton et al., 2015) and our observations of student work in previous 

studies. Like Blanton and colleagues, we considered what types of thinking might be viewed 

mathematically as more sophisticated and did not use students’ thinking alone as the means for 

ordering the progression. Note one difference between our levels and Blanton et al.’s is the 

separation of the Emergent Functional and Condensed Functional levels into representations 

using words and representations using variables. This separation allows us to examine which of 

these representations emerge first for students across different types of tasks. We order the levels 

as we do because we unexpectedly found that students were generally more successful 

representing generalizations using variables than using words. This ordering (i.e., L6 before L7 

and L8 before L9) is supported by the data displayed in Tables 3, 4, and 5.  
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Table 2: Levels of sophistication describing students’ generalizing and representing of 
functional relationships. 

Levels of sophistication Description of Levels 

No response Student does not provide a response. 
L0:  Restatement Student restates the given information. 

L1:  Recursive pattern-particular Student identifies a recursive pattern in either variable 
by referring to particular numbers only. 

L2:  Recursive pattern-general Student identifies a correct recursive pattern in either 
variable. 

L3:  Covariational relationship 
Student identifies a correct covariational relationship. 
The two variables are coordinated rather than 
mentioned separately. 

L4:  Functional-particular 
Student identifies a functional relationship using 
particular numbers but does not make a general 
statement relating the variables. 

L5:  Functional-basic 
Student identifies a general relationship between the 
two variables but does not identify the transformation 
between them. 

L6:  Functional-emergent in variables  

Student identifies an incomplete function rule using 
variables, often describing a transformation on one 
variable but not explicitly relating it to the other. 
Student might set the expression equal to a specific 
number of to the same variable rather than a new 
variable. 

L7:  Functional-emergent in words 

Student identifies an incomplete function rule in words, 
often describing a transformation on one variable but 
not explicitly relating it to the other or not clearly 
identifying one of the variables. 

L8:  Functional-condensed in 
variables 

Student identifies a function rule using variables in an 
equation that describes a generalized relationship 
between the two variables, including the transformation 
of one that would produce the second. 

L9:  Functional-condensed in words 

Student identifies a function rule in words that 
describes a generalized relationship between the two 
variables, including the transformation of one that 
would produce the second. 
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Table 3 displays the percent of students whose written work fell into each of the levels in 

response to part b of the Brady task.1 Note that students are simply asked to describe any 

relationships they notice, so a Recursive pattern-general response (e.g., “the number of people is 

going up by 2s”) is acceptable. We noticed over time, however, that some students began to 

choose to describe their observations using function rules. 

 

Table 3: Percent of student responses falling into each level on part b of Brady task 
Level of sophistication Brady task part b: 

Describing patterns in a table 
Grade 3 pre Grade 3 post Grade 4 

No response 35 0 1 
L0:  Restatement 1 0 0 
L1:  Recursive pattern-particular 2 1 0 
L2:  Recursive pattern-general 43 70 38 
L3:  Covariational relationship 2 6 6 
L4:  Functional-particular 1 7 1 
L5:  Functional-basic 4 7 20 
L6:  Functional-emergent in variables  0 0 0 
L7:  Functional-emergent in words 1 1 4 
L8:  Functional-condensed in variables 0 1 4 
L9:  Functional-condensed in words 0 4 20 
    
(Other responses) 8 4 5 
 

 

Table 4 shows a progression in students’ thinking on tasks asking them to describe a 

functional relationship in words. The downward sloping arrow indicates a trend over time from 

no response, to L2 and L5, to L9. Table 5 shows a progression in students’ thinking on tasks 

asking them to describe a functional relationship using variables. The downward sloping arrow 

indicates a trend over time from no response to success stating a condensed function rule in 

variables (L8).	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Percentages > 10% are bolded for emphasis in Tables 3, 4, and 5. 
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T
able 4: Percent of student responses falling into each level on parts c1and e1 of B

rady task and part a1 of G
row

ing Stars task. 

     
 

Level of sophistication 
Brady’s party part c1: 

W
riting a function rule in w

ords 
Brady’s party part e1: 
W

riting a new
 function 

rule in w
ords 

G
row

ing Stars part a1: 
W

riting a function rule 
in w

ords (quadratic) 
G

rade 3 pre 
G

rade 3 post 
G

rade 4 
G

rade 4 
G

rade 4 
N

o response 
77 

3 
5 

3 
3 

L0:  R
estatem

ent 
7 

5 
2 

0 
0 

L1:  R
ecursive pattern-particular 

0 
2 

0 
1 

0 
L2:  R

ecursive pattern-general 
3 

21 
7 

4 
1 

L3:  C
ovariational relationship 

0 
6 

5 
2 

0 
L4:  Functional-particular 

1 
8 

4 
1 

1 
L5:  Functional-basic 

3 
25 

22 
12 

36 
L6:  Functional-em

ergent in variables  
0 

0 
0 

0 
0 

L7:  Functional-em
ergent in w

ords 
0 

1 
3 

1 
7 

L8:  Functional-condensed in variables 
0 

0 
1 

1 
3 

L9:  Functional-condensed in w
ords 

0 
19 

41 
19 

32 
 

 
 

 
 

 
(O

ther responses) 
10 

12 
8 

56 
17 
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T
able 5: Percent of student responses falling into each level on parts c2 and e2 of B

rady task and part a2 of G
row

ing Stars task. 

   

  

Level of sophistication 
Brady’s party part c2: 

W
riting a function rule in variables 

Brady’s party part e2: 
W

riting a new
 function 

rule in variables 

G
row

ing Stars part a2: 
W

riting a function rule 
in variables (quadratic) 

G
rade 3 pre 

G
rade 3 post 

G
rade 4 

G
rade 4 

G
rade 4 

N
o response 

90 
10 

1 
2 

3 
L0:  R

estatem
ent 

0 
0 

1 
0 

0 
L1:  R

ecursive pattern-particular 
0 

0 
0 

0 
0 

L2:  R
ecursive pattern-general 

0 
6 

0 
0 

0 
L3:  C

ovariational relationship 
0 

0 
0 

0 
0 

L4:  Functional-particular 
1 

3 
1 

1 
0 

L5:  Functional-basic 
1 

0 
0 

0 
1 

L6:  Functional-em
ergent in variables  

0 
5 

6 
5 

6 
L7:  Functional-em

ergent in w
ords 

0 
0 

0 
0 

0 
L8:  Functional-condensed in variables 

0 
37 

64 
39 

67 
L9:  Functional-condensed in w

ords 
0 

0 
1 

0 
1 

 
 

 
 

 
 

(O
ther responses) 

8 
39 

25 
53 

21 
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Note that not all parts of these items were given across grade levels. These tables display 

an initial inability to engage with the tasks and a rather dramatic shift towards being able to 

describe a functional relationship in words or variables. Table 4 illustrates that a significant 

percent of students spent some time at the Recursive-General and Functional-Basic levels as 

well. 

Looking across Tables 3, 4, and 5 we see that, prior to instruction, students had great 

difficulty engaging with the tasks discussed in this paper. This is particularly true of the tasks 

included in Tables 4 and 5. We also see that, with just 18 third-grade early algebra lessons (only 

seven of which focused on functional thinking), many students could respond with some level of 

competence. Across the two years, we see the elimination of No response and an increase in 

students’ abilities to identify general recursive rules and express correspondence rules in both 

words and variables. 

As mentioned above, we were initially surprised to see that more students were able to 

reach the Functional-condensed in variables than the Functional-condensed in words level. This 

was true across both linear (the Brady task) and quadratic (the Growing Stars task) items. Note 

that the sum of the percent of responses at the Functional-basic and Functional-condensed in 

words levels approximately equal that at the Functional-condensed in variables level for each 

item at the end of grade 4. It thus appears that while students may understand the general 

underlying relationship, they tend towards being able to fully describe it in symbols first. 

We also note that in the general shift from No response to Recursive pattern-general or 

the Functional-condensed responses, it appears that levels are often skipped. This is consistent 

with others’ work on learning progressions and trajectories (e.g., Clements & Sarama, 2014), 

where it is often noted that students may skip levels or operate at different levels depending on 
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the context. Given the course grain size of our work, on the other hand, it may be the case that 

levels were not skipped but rather simply not observed. 

 Finally, we acknowledge that a very large “Other” category exists for some of these 

tasks; in particular, parts e1 and e2 of the Brady task. We are beginning to review these 

responses to determine if they might fall into other coherent categories. Our early findings 

suggest that while these are incorrect responses, they often demonstrate some understanding 

related to functional thinking. 

 

Significance 

The work presented is part of a comprehensive effort to coordinate curriculum, 

instruction, assessment, and analyses of student learning. We believe it is important work to 

share with both the research community and, ultimately, with teachers as “knowledge of 

developmental progressions enables high quality teaching based on understanding both 

mathematics and students’ thinking and learning” (Clements & Sarama, 2014, p. 13).  
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